Analysis of time delay effects on a linear bubble chain system?
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A chain of vertically rising discrete air bubbles represents a transition phenomenon from individual
to continuum behavior in a bubbly liquid. Previous studies have reported that there is a preference
for acoustic energy to propagate along the bubble chain and that this behavior could be explained
by a coupled-oscillator model. However, it has recently been demonstrated that quantitative results
from the coupled-oscillator model do not match experimental data. In this paper, it is shown how
adding time delays to the coupled-oscillator model can produce results that are in better agreement
with experimental data. In addition, the effects of time delays on the natural frequencies and
damping of individual eigenmodes of the vertical bubble chain are also investigated. It was found
that adding time delays can dramatically change the damping of the different modes of the system
while having less dramatic impact on the natural frequencies of the individual eigenmodes.
Counterintuitively, it is found that the effects of time delays appear to be more important when the
bubbles are closer together than when they are farther apart. © 2008 Acoustical Society of

)

America. [DOI: 10.1121/1.2945156]

PACS number(s): 43.30.Nb, 43.20.Fn, 43.20.Px, 43.20.Bi [RCG]

I. INTRODUCTION

Many researchers have directed efforts towards the de-
velopment of a model to describe the volumetric oscillations
of gas bubbles in liquid. The acoustic behavior of an isolated
bubble has been extensively researched (see Ref. 1 and ref-
erences therein). There have also been many publications on
the dynamics of the acoustic field in the vicinity of bubble
pairs (see Refs. 2-9). More recently, Ida'® has extended this
line of investigation and studied the natural frequencies of a
system consisting of three bubbles of different sizes. When
there are many bubbles in the medium, Commander and
Prosperetti,11 Duraiswami et al.,12 and Nicholas ez al.'® have
taken the continuum approach and have assumed a spatially
homogeneous medium with the void fraction being the im-
portant parameter. These continuum theories have been used
by Phelps et al.,14 Duraiswami et al.,12 and Terrill and
Melville'® as the basis of several instruments for oceano-
graphic and industrial applications. Most of these systems
measure bubble-size distributions, relying on an active prin-
ciple. Sound is sent into the water and the attenuation or
reflection of the resulting signal is interpreted to infer the
bubble-size distribution. On the other hand, there are passive
systems, which rely on bubbles emitting sound at their natu-
ral frequencies. It is not difficult to obtain experimental pres-
sure signals emitted (passively) by a bubbly flow and such
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measurements have been made for many years (see Refs.
15-18). However, most analyses have been carried out in the
frequency domain, with attention focusing on how to convert
the spectra into bubble-size distributions. Above all, most
analyses assume the bubbles are isotropically and homoge-
neously distributed in the fluid, which is, in fact, a rarity,
either in nature or industry.

The acoustic signature of a finite number of discrete air
bubbles represents an important yet little-researched area in
multiphase flow. The scattering of acoustic waves from gas
bubbles in liquids plays a crucial role in determining the
acoustic attenuation and dissipation in the surrounding me-
dium. Such systems could provide insight into sound propa-
gation in the anisotropic and inhomogeneously distributed
bubbly systems that are the norm in practice. The current
work is aimed at the analysis of the coupled-oscillator math-
ematical model when applied to a vertical chain of bubbles
(for example, see Fig. 1) in which the individual bubbles
resonate in the monopole (isotropic) mode (see Ref. 19).
Even though the propagation of acoustic energy generated by
each individual bubble might be isotropic, it has been found
that the distribution of acoustic energy close to a bubble
chain is not isotropic, due to the interaction of the acoustic
waves with other bubbles. Manasseh e7 al.”® and Nikolovska
et al.”' have applied a coupled-oscillator formalism to de-
scribe the collective scattering due to multiple gas bubbles in
a chain. The sound was initiated naturally on the detachment
of each bubble from a nozzle at the base of the chain and the
effects of other bubbles were modeled through a set of
coupled ordinary differential equations.
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FIG. 1. (Color online) Photo of a typical bubble chain.

In this paper, an analysis is carried out using the
coupled-oscillator model proposed by Feuillade® and used by
many others (Feuillade,” Tolstoy,” and Doinikov e al.*?). In
particular, the effects of time delays on the natural frequen-
cies and damping of the bubble chain system will be high-
lighted. A time delay arises from the finite speed of sound
propagation in the liquid or, in other words, from the finite
compressibility of the liquid. As a result, the acoustic pres-
sure field influencing the oscillations of all the other bubbles
is a time-retarded field.”> The present work is essentially an
extension of the study carried out by Doinikov et al.,”> which
highlighted the effects of time delays on a bubble chain with
different numbers of bubbles. In Ref. 22, the effects of add-
ing more bubbles in the chain were investigated. The dis-
tance between the bubbles was kept constant so when more
bubbles were added into the system, the bubble chain just
became longer. This is very different to what happens in
laboratory experiments, where it is more common for the
length of the bubble chain to be kept constant because the
water tank used is likely to be of a constant height. The
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number of bubbles in the chain can be increased by increas-
ing the airflow rate in the nozzle and as a result, the distance
between the bubbles in the chain will also become smaller.
Hence, the distance between the bubbles is an important pa-
rameter in the problem and the effects of time delays as a
function of bubble separation are investigated in the present

paper.

Il. GOVERNING EQUATIONS AND ANALYSIS

In the following analysis, the “self-consistent” approach
(see previous work by Tolstoy,3 Feuillade," and Feuillade®)
will be used. This is one method of overcoming (or rather
side-stepping) the problem of infinite rereflexions in coupled
multibubble systems. The total pressure field incident on any
bubble is taken as the sum of the pressure fields radiated by
all the other bubbles in the system, plus any external forcing.
However, acoustic energy emitted by a bubble, once incident
on a second bubble, is reradiated back to the first, and so on,
creating an infinite series, analogous to a pair of mirrors
facing each other. With many bubbles, this is analytically
problematic. This problem arises in many scattering phenom-
ena in physics, not only in acoustics.” The key to the self-
consistent approach is that the pressure fields from the other
bubbles are defined to have already experienced the infinity
of other interactions, which affect them. One consequence is
that the dependent variables [which will be defined as x,()
below] lose their precise physical meaning as the radial per-
turbation of the nth bubble. The merits of using the self-
consistent approach as opposed to the alternative multiple
scattering approach have been discussed by Feuillade® and
Tvversky.23

In order to simplify the analysis, it will also be assumed
that the equilibrium radii of all bubbles in the chain are the
same and that the distance between the neighboring bubbles
in the chain is constant. In the experiments, the bubble rise
velocity was higher further up the chain® owing to the initial
acceleration of the bubbles from their detachment point at
the base of the chain. Hence, the spacing between the
bubbles was larger higher up the bubble chain.

As the effort in this paper is to extend the work pre-
sented by Doinikov et al.,”* the same notation as in that
paper will be used. Using the assumptions above and assum-
ing a compressible liquid (i.e., a finite speed of sound propa-
gation), small, radial free oscillations of N coupled bubbles
are described by the following equations:

YR
£,(0)+ 0988,(1) + wpr, (== X (= dyl),

m=1,m#n “nm
(1)

where, in the absence of radiative interactions, x,(z) is the
(small) change in radius of the nth bubble. Because we use
the self-consistent approach, x,, is defined to include the ef-
fects of radiative interactions in the system and hence can no
longer be precisely compared with the behavior of the nth
bubble. However, for the present paper, that is not a problem
since comparisons with experiment are only being made with
quantities such as pressure and propagation speed, not on the
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behavior of individual bubbles. R, is the equilibrium radius,
d,,, 1s the distance between the centers of the nth and mth
bubbles, and c is the speed of sound in bubble-free water. &
is the total damping coefficient of an isolated bubble consist-
ing of radiation and thermal and viscous dampings (see Refs.
1 and 24). We assume adiabatic conditions and the resonant
(Minnaert) angular frequency is calculated as

1 /3vpy

o= "
Ry V p

where p, is the static pressure, y=1.4 is the ratio of specific
heats, and p is the density of the liquid. The coupling term on
the right hand side of Eq. (1) is the time delay term and it
reflects the finite time it takes for a disturbance to reach a
nearby bubble. For an incompressible fluid, c=%°, hence Eq.
(1) can be simplified to

N

>

m=1,m#*n

2)

&jc'm(t).

%,(1) + 006%,(1) + wix, (1) = — p

It must be noted that Egs. (1) and (2) assume that the acous-
tic field that affects a bubble is predominantly from a mo-

0 (Ry/d1p)e™M12 (Ry/d,3)e™ "3
(Ro/dy;)e™ ™ 0 (Ro/dy3)e™™
(Ro/d3;)e "1 .. 0
(Ro/dgp)e "1

(Roldy;)e™ ™1

R(M\) is a symmetric matrix with zeros along the main diag-
onal. The off-diagonal terms are exponential functions of
N7, Where 7,,,=d,,,/c is the time delay. It is more conven-
tional to write Eq. (4) as

D\, 7,,) =[A2I+R(\)) + \C +K]A = 0. )
Equation (5) represents a nonlinear eigenvalue problem.
Given values of 7,,,, one needs to find values of A (eigenval-
ues) such that the determinant of D is zero. For a NXN
system, there are 2N eigenvalues,

AN=¢tio, (6)
where o is the natural frequency, £ is the damping for the
particular eigenvector (mode), and i is the imaginary unit.
The eigenvalues occur in complex conjugate pairs.

For a bubble in isolation, it can easily be shown that

(1)05 . 52
N Y | I )

thus,
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(Rol/d3y)e™ 4

0

nopolar source (see Ref. 6). This suggests that Egs. (1) and
(2) should only be used in situations where d,,,>R, (see
Ref. 22).

The solution to Egs. (1) and (2) can be expressed in the
form

x(1) = AeV, (3)

where x(7) is a vector whose individual components are x,,(z)
and A is the eigenvector corresponding to the eigenvalue A.
Substituting Eq. (3) into Eq. (1) gives

[NT+AC+KJA=-NR\MA, (4)

where I is the identity matrix,

C = (1)051,

K = oI,

and

(Ro/dyy)e™ N
(Ro/dap)e 72N
(Ro/d3y)e™ "N
(Ro/dyy)e™ v

0

and

52
o = W (1—2)

Note that for the millimeter-sized bubbles considered in this
paper, o is small so wy; = wy. In the presentation of results
below, all data will be normalized with the parameters from
the isolated bubble case, i.e.,

and w*zf*zi.

Wy

sk

3 & (7)

If time delays are neglected (i.e., if the liquid is assumed
to be incompressible), then 7,,,=0 and the matrix I+R in Eq.
(5) no longer consists of any exponential functions. Hence,
we have a conventional quadratic eigenvalue problem. This
type of problem has many applications and has been studied
extensively by many researchers (see Ref. 25 and references
therein). The eigenvalues and eigenvectors for the quadratic
eigenvalue problem can be obtained using standard numeri-
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cal routines that are widely available (e.g., the polyeig func-
tion in MATLAB 7.0). If time delays are taken into consider-
ation, then obtaining the eigenvectors and eigenvalues of Eq.
(5) is more complicated. A method of finding the eigenvalues
for time delay systems has been outlined by Hu et al*® In
that paper, they introduced a numerical method to obtain
eigenvectors and eigenvalues for a system where there is
time delay in x and X in the governing equation. Furthermore,
Hu et al.*® only considered systems where there is only one
(constant) time delay for the whole system. Thus, the system
considered here is different to the problems considered by
Hu et al.* in two respects. Firstly, the time delay is in the X
term [see Eq. (1)], and secondly, the time delays, 7,,,, are not
constants but are dependent on the distance between bubbles
n and m. Hence, the method suggested by Hu et al.*® needs
to be modified and extended for the system of equations that
is of interest here.

First, consider the case where time delays are neglected,
i.e., 7,,=0. We require a solution for A, and \, that satisfies

D()\,,0)A, =0. (®)

This represents a conventional quadratic eigenvalue problem.
When one takes into account time delays, then there exists an
eigenvalue, \,, and eigenvector, A,, near \, and A, such that
the following condition is true:

D(\,, 7,)A, =0, )

ie., N\, and A, are the eigenvalues and eigenvectors of the
time delay system [Eq. (9)]. We will write

N=\+AN, and A,=A,+AA,. (10)
Substituting Eq. (10) into Eq. (9) gives
D\, + AN, 7,,) (A, + AA,) =0. (11)

If we perform a Taylor series expansion about A, and ignore
terms of the order of (A\,)?> and AXN,AA,, then one may write

D\, 7)) (A, + AA,) = ANE(N,, 7,,) (A,), (12)
where
E(\,, ) = = NI+ R(= \?7,,,, + 2),) + C). (13)

Following Hu et al.,26 we define a vector P, such that

L

P =
"T AN,

(A, +AA,). (14)

Equation (12) can now be written as
D\, )P, = E(\,, 7,,)A,. (15)
In order to solve Eq. (15), consider the ratio

P;kD()\n Tnm)Pr PTE()\V’ Tnm)Ar
P:<E()\r’ Tnm)Pr - PjE()\w Tnm)Pr ’

(16)

where Pf is the complex conjugate of P,. However, P, and
A, are related to Eq. (14), so Eq. (16) can be written as
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P;kD()\r’ Tnm)Pr P;kE()\r’ Tnm)Ar
PYEMN. 7P, PTE(N.7,)(A, + AA /AN,

P'E\\,. T,)A,
=AN
PrE()\r’ Tnm) (Ar + AAr)

P*E(A’r’ Tanl)Ar
=AN— - =
PrEO\,, T A, + PrEO\,, T AA,

=A)\,(1— ) (17)

Hence, A\, can be approximated as
(18)

P E(\,.7,,)AA,
Lt
PrE()\ﬂ Tnm)Ar

P;kD()\r’ Tnm)Pr
P'E(\,.7,,)P,

So the eigenvalues, \,, and eigenvectors, A,, for the time
delay problem can be calculated as follows.

(1) Obtain the eigenvalues, \,, and eigenvectors, A,, assum-
ing that time delays 7,,,,=0. This can be done using stan-
dard techniques described in Ref. 25.

(2) N\, and A, are good initial guesses for the eigenvalues
and eigenvectors of the system with time delay. We let
N/ =N, and A/=A,, where N, and A, are the initial
guesses for \, and A,.

(3) Construct the matrix E(\/, 7,,,,) [see Eq. (13)] from \;.

(4) Solve Eq. (15) to obtain P,.

(5) Use Eq. (18) to obtain an estimate for AN,. The new
value for N, can now be calculated to be \,+AN,.

(6) Use Eq. (14) to calculate a new estimate for the eigen-
vector A, =A,+AA,.

(7) Go back to step 3 with the new values of \; and A until
the values of \] and A; do not change anymore. Once
the solution is converged, \,=\; and A,=A].

From our numerical calculations, it was found that, in
general, for small values of D/R,, where D is the spacing
between the centers of two adjacent bubbles, the eigenvalues
of the time delay system occur in distinct complex conjugate
pairs for small values of N. For larger values of N, the ei-
genvalues move closer together. Sometimes, in the numerical
iterations, it is possible to converge to the same eigenvalue
even though different starting guesses were used. To over-
come this problem, the eigenvectors and eigenvalues are first
obtained with small values of D (only in the time delay
term). Then, these eigenvalues and eigenvectors are used as
guesses for the system with the desired value of D.

Once the eigenvalues and eigenvectors of the time delay
system are obtained, the solution in the physical domain can
be constructed by a linear combination of A, and corre-
sponding \,,

N
xX(1)= 2 BA, M, (19)
n=1

where [, are constants to be determined from the initial
conditions.'® At time t=0, it will be assumed that
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X(t = 0) = < > . (20)

O O O =

0
\ J
It will also be assumed that

dx
—(t=0)=0.
dt( )

This is only for the sake of convenience because it is not
known what values to use at t=0. The correct values to use
for dx/di(t=0) and x(r=0) require extensive studies of the
bubble wall oscillations as the bubble is formed and initially
perturbed. Neither experimental nor numerical data on the
magnitudes of these naturally initiated oscillations are easy
to obtain; this is a subject of active research (see, for ex-
ample, Refs. 27-31) that is beyond the scope of the current
manuscript.

lll. RESULTS AND DISCUSSION

The results will be divided into two sections. Section
IIT A investigates the effects of adding time delays to the
mathematical model. The bubbles that were considered had a
radius of 2 mm, since millimeter-sized bubbles are usually
excited only to the small amplitudes for which the linear
theory presented above is valid. Results from simulations
carried out using the model both with and without time de-
lays are presented in Sec. III B. The theoretical data are com-
pared with experimental data in order to ascertain if time
delays are needed in order to better represent the physics of
the problem.

A. Analysis of the eigenvalues

As a reference, it would be instructive to first compare
the effects of time delay for the case when there are just two
bubbles in the chain. For this case, the higher order n=2
mode corresponds to the case when the bubbles oscillate
180° out of phase with each other. The n=1 mode corre-
sponds to the situation when the two bubbles oscillate in
phase with each other. Figure 2 shows the damping and fre-
quency plots if time delays are not taken into account. The
distance, D, between the two bubbles is normalized by A
=c/fy, which is the wavelength associated with the natural
frequency fy=w,/(2) of an isolated bubble. The calculated
mode damping, &, and frequency, f, are normalized accord-
ing to Eq. (7).

As can be seen, the highest frequency (n=2) mode has
the highest values of damping as is found in many natural
oscillatory systems. An extension of this work to investigate
how the natural frequencies of a bubble system change in the
presence of a wall have been reported by Payne et al** Tt is
also interesting to note that there is no crossing over of the
frequency and the damping, i.e., for all values of D, the n
=2 mode always has a higher frequency and damping than
the n=1 mode. When the time delay is taken into consider-

J. Acoust. Soc. Am., Vol. 124, No. 2, August 2008

1.05
1.041!
1.03F
1.02F

1.01 i

0.991 i

0.98F b

0.97r b

0.961 i

0.95 . . . . .

1.05
1.04
1.03

1.02F

"-‘-|-\-\-||-
|
—~
O
~

1.01r

AN

‘-

N
il R N NN T R

f*

0.99
0.98(]
0.97
0.96
0-95 L L L L L
0 0.5 1 1.5 2 25 3
D/A

FIG. 2. Plot of —&* (a) and f* (b) for the different modes predicted by the
model without time delay. (—) n=1; (——) n=2. There are only two bubbles
in the system and Ry=2 mm.

ation, the results are shown in Fig. 3. There are clear differ-
ences with the information shown in Fig. 2. Most obviously,
the curves for the n=1 and the n=2 modes cross over at
distinct values of D/N. The n=1 and n=2 curves for & cross
over at D/\N=(k+1)/2 where k=0,1,2,..., and the curves
for f* cross over when D/N=(2k+1)/4 where k=0,1,2,....
When the bubbles are close together [i.e., when D/\
<(1/4)], the damping for the n=1 mode is greater than the
damping of the n=2 mode but the natural frequency for the
n=2 mode is greater than the n=1 mode. This is in stark
contrast to the results when the time delay is not taken into
account. When (1/4) <D/\<(2/4), there is a crossing over
of the natural frequencies to create a situation where the n
=1 mode has a higher frequency than the n=2 mode and the
damping of the n=1 mode is still higher than the n=2 mode.

To understand the effects of time delay on the damping
of a two-bubble system, consider the following coupled set
of delay differential equations:

10+ 0034 () + 6 (0=~ 2501 7). 1)
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FIG. 3. Plot of —&* (a) and f* (b) for the different modes predicted by the
model with time delay. (—) n=1; (—-) n=2. There are only two bubbles in
the system and Ry=2 mm. Note the different y-axis scales.

¥5(1) + 0o (1) + wixs (1) = — %x'](t - 7). (22)

Both bubbles are of the same equilibrium radius R, separated
by a distance D. The time delay is given by 7=D/c. If we
assume that 7is small, then using a Taylor series, the time
delay term in Eq. (21) can be approximated as

(1= 1) = (1) = 75(0). (23)

Note that this approximation is only made for the purpose of
the analysis in this section. Equation (23) is not used to ob-
tain the results in Fig. 3. It is possible to obtain an expression
for X,(¢) by differentiating Eq. (22) as follows:

R
(1) = — o8, (1) — wiin(1) - 30 (t-7).

Substituting Eq. (23) into Eq. (21) gives
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R R
() + 50(1 + w7y + wy o, (1) + Boa)ngz(t)

) Ry\? ..
+ wpx (1) + B X, (t—7)=0. (24)

Performing a similar exercise on the time delay term on the
right hand side of Eq. (22) gives

R R
50(1 + wydDF, (1) + %, + Bowgm(t) + Wy Oty(f)

) <R0>2
+ wpxy (1) + B 7x(t—7)=0. (25)

The coefficient of the last term of Egs. (24) and (25),
(Ry/D)*7, is usually small so it is possible to ignore the
(third derivative) time delay term on the right hand side of
Egs. (24) and (25). This will give us a coupled set of ordi-
nary differential equations, which can be written in matrix
form as

Ry
1 D (1 + 0)057') <x1 (l‘) )

R .
Bo(l + wyO7) 1 (1)

Rywy

b e (xl(t))
MT (1)

1
Do

2
+{“’0 021(’”(’)):<0>. (26)
0 w( Xz([) 0

Equation (26) will result in a quadratic eigenvalue problem,
which can be studied using conventional techniques (see Ref.
25). Since the damping is predominantly influenced by the
matrix of the first derivative term, it is clear that the effects
of time delay are to increase the overall damping of the sys-
tem. This influence can be quantified by the parameter
Rywy7/Dé. Equation (26) also suggests that when the damp-
ing is small (i.e., when wyd< 1), the effect of the time delay
is more significant on the overall system’s damping than on
its frequency. Moreover, time delay apparently introduces an
additional form of damping [see Eq. (26)] that is independent
of the individual-bubble damping J. A similar but more thor-
ough exposition of this analysis can be found in the paper by
Doinikov er al.”

It is possible to think of the physical effects of coupling
with time delay as introducing an additional source of radia-
tion “damping,” which could either increase or decrease the
net system damping. When time delay introduces a phase
lag, the energy transferred to another bubble could be either
more or less rapidly dissipated, depending on the location of
the other bubble with respect to the phase of the traveling
wave. The cyclical variation of the damping is also found by
Feuillade' and a very similar explanation is given in that
paper.

Kapodistrias and Dahl*® carried out experimental mea-
surements of the backscattering of sound from a two-bubble

+ Lt)()5
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system in water. Bubbles with a radius of 585 um were used
in their experiments and they were excited at frequencies
between 80 and 140 kHz. The distances between the bubbles
were varied between 1.2 and 70 mm and they reported that
“for D/N=1/2, the backscattered radiation is maximized,
while for D/N<1/2 the backscattered radiation is reduced
considerably.” This observation could be explained by con-
sidering the information in Fig. 3. While this figure was cre-
ated for bubbles of 2 mm radii, a very similar graph can be
generated for bubbles with radii 585 um. If we assume that
the symmetric mode is the dominant mode in the experi-
ments, then Fig. 3 shows that when D/\=1/2 the damping
is quite small compared to when D/\ <1/2. This would lead
to higher values of backscattered radiation for D/A=1/2
when compared to the data for D/N<1/2. Kapodistrias and
Dahl™ used a multiple scattering approach to explain this
variation in scattered acoustic energy as a function of the
ratio of the spacing of two bubbles to the sound wavelength.
Here, we have shown that the self-consistent coupled-
oscillator model with time delays can predict a similar de-
pendence on the bubble spacing to wavelength ratio in a
multiple bubble system.

Natural frequencies and damping plots for the situation
for ten bubbles (N=10) are shown in Figs. 4 (no time delay)
and 5 (with time delays). Similar to the two-bubble (N=2)
case, Fig. 4 shows that the curves for damping and natural
frequencies for the model without time delays do not cross
over. This indicates that the natural frequencies and damping
corresponding to the n=1 mode will always be smaller than
the damping and natural frequencies for the higher modes.
This situation seems to be independent of the separation D of
the bubbles in the chain. When time delays are taken into
account, Fig. 5 shows that similarly to the N=2 case, the
curves for the & cross over at D/\=(k+1)/2 and the curves
for f* cross over when D/N=(2k+1)/4 where k=0,1,2,....
Similar to the two-bubble case, the results here for the time
delay model can be explained when the incident wave ema-
nated from the neighboring bubble is assumed to be a trav-
eling wave. The &* plots of the time delay model for the N
=2 and N=10 cases [Figs. 3(a) and 5(a)] show that the maxi-
mum and minimum damping values occur because the phase
of the incident wave is changed, i.e., depending on its phase,
the incident wave can suppress or increase the oscillation
mode of the bubble.

One way of analyzing the effects of time delay on the
system is to plot the ratios of the natural frequencies,

= fiime delay/fno time delay> (27)
and damping
:8 = gtime delay/gno time delay> (28)

for both models at particular values of D/\. Plots of « for
N=2 and N=10 are shown in Fig. 6 and similar plots for 3
are shown in Fig. 7. It is clear that adding time delays do not
have much effect on the natural frequencies of the system.
The maximum variation for the N=2 chain is only about
0.5% and the N=10 chain has a maximum variation of less
than 3%. Thus, there are only very small variations in the
natural frequencies even when there are more bubbles in the
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FIG. 4. Plot of —&* (a) and f* (b) for the different modes predicted by the
model without time delay. (—) n=1; (—) n=10; (---) all intermediate
modes. The analyzed system consists of an equally spaced bubble chain
consisting of ten bubbles with equilibrium radii, Ry=2 mm.

chain. It is also clear that, in general, adding time delays
increases the natural frequency of the lowest (n=1) mode but
decreases the frequency of the highest (n=N) mode. In terms
of damping, Fig. 7 shows that time delays have a dramatic
effect on the damping of the individual modes. For N=2,
there is almost a 40% increase in damping for the n=1 mode
for small values of D/N. The n=2 mode damping decreases
by about 45% when time delays are taken into account.
When N is increased to 10, Fig. 7(b) shows that the effects of
time delays are even larger. The reason why time delay has a
greater effect on system damping than on the natural fre-
quencies is explained with Eq. (26) and the corresponding
discussion on page 16.

B. Comparison with experimental data

In order to assess the importance of time delays, pre-
dicted data from the theoretical models will be compared
with experimental data from Nikolovska et al.,21 who carried
out a high-spatial resolution experimental investigation on
the evolution of the acoustic energy along the bubble chain.
The experimental principles can be found in Ref. 20 and full
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details of the high-resolution experiments can be found in
Ref. 21. Air bubbles were introduced into a tank with a
I mm radius nozzle. Depending on the bubble production
rate (BPR), the bubbles generated from this nozzle had radii
between 1 and 2.35 mm (see Table I). Photographic images
similar to that shown in Fig. 1 were used to determine the
size of the bubbles. The comparison with theoretical predic-
tions will be made along a vertical line, which is 6 cm from
the nozzle. Hydrophones were used to record data at 30 kHz.
The total period of data acquisition, 7, was 1024/30 000
=0.0341 s=34 ms. The distance between bubbles in the
chain ranged from 36 mm at the lowest BPR to 6.5 mm at
the highest BPR. In this system, most of the acoustic energy
is generated when the bottom bubble detaches from the
nozzle. In an earlier study, Manasseh et al®® showed that
there is an anisotropic distribution of acoustic energy in the
vicinity of the bubble chain. Experimental data show that the
rms value of pressure dies off much faster as we move away
from the chain than along the bubble chain, indicating that
the transfer of acoustic energy is more efficient along the
bubble chain.
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Instantaneous snapshots from the experimental data of
the acoustic pressure profile are shown in Fig. 8 at time
instances t/Ty=7.2, 7.6, 7.9, and 8.3, where T}, is the Min-
naert period of a single isolated bubble. It is clear that there
is a preference for the propagation of acoustic energy along
the bubble chain. In order to compute the propagation speed
along the bubble chain, V), a numerical algorithm was de-
veloped to detect and track the local maximum of the pres-
sure profile (peak pressure) measured from the experimental
data. The location of the local pressure maxima found by the
algorithm is indicated by ° in Fig. 8. By following these ©
symbols, it is possible to calculate V,. When the peak of the
acoustic pressure wave leaves the domain, the algorithm
would detect and follow another peak from the bottom of the
bubble chain.

The results are shown in Fig. 9. The vertical axis is the
location of the peak pressure along the bubble chain and the
horizontal axis shows the corresponding value of V), normal-
ized by the speed of sound in water, c¢. Only data from the
20 Hz BPR case are shown. Data from all other cases show
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similar trends. Postprocessing of the experimental data
shows that V), is smaller at the bottom of the bubble chain
and increases slightly further up the bubble chain [see Fig.

TABLE I. Parameters from experimental studies. Data are from the 1 mm
nozzle.

BPR (Hz) Frequency (kHz) Radius (mm) D (mm) N
10 1.97 1.18 36 40
12 1.90 1.35 32.8 48
14 1.88 1.41 30.0 56
18 1.8 1.50 26.6 72
20 1.79 1.52 19.7 80
22 1.68 1.55 17.0 88
24 1.52 1.64 16.0 96
26 1.21 1.70 14.0 104
29 1.15 1.88 10.3 116
31 1.06 2.00 9.2 124
34 0.91 2.10 7.5 136
38 0.84 2.35 6.5 152
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FIG. 8. Vertical profiles of instantaneous pressure at t/Ty=7.2 (—), 7.6
(=), 7.9 (-+*), 8.3 (----). The O in the figure marks the positions of the
numerically predicted local pressure maxima.

9(a)]. In general, V), calculated from the experimental data is
usually smaller than c. However, there are a small number of
instances where V), calculated from the experimental data
exceeds ¢, which is due to the noise in the experimental data.
Data from predictions using the coupled-oscillator model
without time delays are shown in Fig. 9(b). There are large
variations in V), as the acoustic pressure moves up the bubble
chain. When the pressure peak is at the bottom of the chain,
predicted values of V), are usually smaller than c. As the
pressure peak moves up the chain, predicted values of V,
increase to nearly 3c. This is unrealistic and can be explained
by recalling that Eq. (2) assumes that any disturbance from a
neighboring bubble immediately affects (travels at an infinite
speed to) a nearby bubble. Thus, it is unsurprising that cou-
pling these equations without time delays will produce an
estimate of V,, which is much larger than c. This anomaly is
overcome by incorporating time delays into the coupled-
oscillator model, as shown in Fig. 9(c). The predicted values
of Vv, are much more reasonable, closer to the values of v,
calculated from experimental data [compare Fig. 9(a) with
Fig. 9(c)]. The coupled-oscillator model with time delays
also predicts a smaller variation of V), as the pressure peak
moves up the bubble chain, again consistent with v, calcu-
lated using experimental data.

From the experimental and numerical data, an observa-
tion that it was not possible to follow the pressure peak
throughout the domain for ¢/7,<<5 and ¢/T>1/4 where T
=1024/30 000=0.034 s=34 ms is the total time period of
data acquisition in the experiments was made. Usually, #/T
>1/4 would correspond to approximately #/7,>20. For
t/Ty<5, the peak of the the acoustic pressure profile flattens
out as it reaches the top of the domain, which makes the
maximum difficult to detect numerically. On the other hand,
for t/T>1/4, the signal decays to essentially zero, thus any
local peak in the data would be almost undetectable. So it is
only possible to calculate the average values of V, for
Ty/5<t<(1/4)T and the results are shown in Fig. 10. At a
smaller BPR, there are large discrepancies between the
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model without time delay and the model with time delay. As
noted above, there is better agreement between the experi-
mental data and the mathematical model when time delays

824  J. Acoust. Soc. Am., Vol. 124, No. 2, August 2008

0 5 10 15 20 25 30 35 40 45 50
BPR(Hz)

FIG. 10. Comparing the average phase velocity (V,), normalized by the
speed of sound in water ¢ for experimental data at different bubble produc-
tion rates (BPRs). (O) Experimental data; (——) numerical model with no
time delays; (—) numerical model with time delays.

are taken into account. As we increase the BPR, there are
more bubbles in the chain and the distance between bubbles
in the chain becomes smaller. Hence, the effects of time de-
lays are reduced. This is one possible reason why Fig. 10
shows that there is good agreement with experimental data
for both models at a large BPR.

The eigenvalue results (Fig. 7) had showed that time
delays had an increasing effect on the damping for larger
values of N. However, Fig. 9 shows time delays had a de-
creasing effect on the propagation speed as N (BPR) in-
creased. This is probably because different physical phenom-
ena are responsible for overall system damping and
propagation speed. As N increases, the energy transfer to all
other bubbles (affecting overall dissipation) is enhanced be-
cause the coupling becomes stronger as bubbles become
closer. This increases the relevance of time delays, which
provide a mechanism for altered dissipation as explained on
page 18. However, as N increases, the lag in information
transfer to neighboring bubbles (affecting propagation speed)
is decreased. This reduces the relevance of time delays.

From Fig. 10, the time delay model produces a better
comparison on propagation speeds of the non-time-delay
model, particularly when bubbles are far apart (low BPR). In
contrast, the comparison between experimental and numeri-
cal data for the distribution of rms pressure, P, (Fig. 11),
does not suggest a clear superiority of one model over an-
other. In calculating P, for Fig. 11, the averaging is done
over 0 <t<<T. Only data from four BPRs are shown but data
from all other BPRs show the same trends. Farther from the
bubble generation point (i.e., at larger y), the time delay
model generates pressures that are closer to the experimental
data than the non-time-delay model. Pressures in the time
delay model are lower than in the non-time-delay model,
mainly due to the higher damping of the modes when time
delays are taken into account [compare data in Figs. 4(a) and
5(a)]. As the acoustic wave travels up the bubble chain, the
incorporation of time delays produces an enhanced damping
effect on the wave, which reduces the predicted values of

Ooi et al.: Time delay effects in bubbly media



(a)

0 0.2 0.4 0.6 0.8 1
P /P(0)

rms

0.9 (b)
0.8F
0.7F

0.6

0.4+ %o v
o\
0.3r °&

0.2F 1o,

0.9 !

)
0.7r o

0.6 3

o
3
0.4f Q
3
0.3r )
0.2

v o
0.1 2

FIG. 11. Comparison of the rms pressure for different bubble production rates (BPRs). (a) BPR=22 Hz, (b) BPR=26 Hz, (c) BPR=31 Hz, and (d) BPR
=38 Hz. (O) Experimental data; (—) predictions using the model with time delays; (—-) predictions using numerical model without time delay.

P s further up the bubble chain. However, the trends, in
general, do not match the experimental data, particularly at a
higher BPR.

The discrepancies between the experimental data and
theoretical models could be due to a number of factors.
Clearly, the shape of the bubbles is not constant (Fig. 1), and
this is known to “detune” the resonant frequency wo.34 The
spacing between the bubbles is also not a constant but varies
as the bubble transitions from its initial vertical trajectory to
a spiral tlrajectory.35’3 6 Perhaps the most significant issue is
that both theoretical models assume that the ratio Ry/D is
very small (see discussion on page 6). In the experiments,
Ry/D ranges from about 0.09 to approximately 0.36. These
values are not very small, and the approximation worsens for
a high BPR, consistent with the worsening of the comparison
with experiment at a high BPR.

IV. CONCLUSIONS

An investigation on the effects of time delays in the
coupled-oscillator model has been carried out. The models
have been applied to the case of a bubble chain and results
from the analysis show that the main effects of time delays
are to increase the amount damping of the lowest mode and
decrease the amount of damping in the highest mode. If there
are no time delays, the lowest frequency mode has the small-
est amount of damping. When time delays are taken into

J. Acoust. Soc. Am., Vol. 124, No. 2, August 2008

account, the situation is reversed with the highest damping
occurring at the lowest frequency. This study also shows that
time delays do not have a significant effect on the natural
frequencies of each mode. However, the addition of time
delays can have a major impact on the damping of each
individual eigenmode.

Previous investigations have shown that there is a pref-
erence for acoustic energy to propagate along a bubble chain.
It has also been reported that the average speed of propoga-
tion of acoustic energy is much smaller than the speed of
sound in water. Calculations conducted without taking time
delay into consideration show propagation speeds much
faster than the speed of sound in water. Time delays reduce
the speed of propagation and predict propagation speeds
much closer to experimental data.
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